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Blackbody radiation

* Hot objects glow (toaster coils, light bulbs, the sun).

* Asthe temperature increases the color shifts from Red (700 nm) to Blue (400 nm)

Hot:
glows deep red

A blackbody is a hypothetical object that
is a perfect absorber of electromagnetic
radiation at all wavelengths

Stars closely approximate the behavior of
blackbodies, as do other hot, dense
objects

The intensities of radiation emitted at
various wavelengths by a blackbody ata FTiie Even hotter:

given temperature are shown by a glows reddish-orange glows yellowish-white
blackbody curve

(b)



Presenter
Presentation Notes
We shall now turn to another puzzle confronting physicists at the turn of the century (1900): just how do heated bodies radiate?  There was a general understanding of the mechanism involved—heat was known to cause the molecules and atoms of a solid to vibrate, and the molecules and atoms were themselves complicated patterns of electrical charges.  (As usual, Newton was on the right track.)  From the experiments of Hertz and others, Maxwell’s predictions that oscillating charges emitted electromagnetic radiation had been confirmed, at least for simple antennas.  It was known from Maxwell’s equations that this radiation traveled at the speed of light and from this it was realized that light itself, and the closely related infrared heat radiation, were actually electromagnetic waves.  The picture, then, was that when a body was heated, the consequent vibrations on a molecular and atomic scale inevitably induced charge oscillations.  Assuming then that Maxwell’s theory of electromagnetic radiation, which worked so well in the macroscopic world, was also valid at the molecular l

Any body at any temperature above absolute zero will radiate to some extent, the intensity and frequency distribution of the radiation depending on the detailed structure of the body.  To begin analyzing heat radiation, we need to be specific about the body doing the radiating:  the simplest possible case is an idealized body which is a perfect absorber, and therefore also (from the above argument) a perfect emitter. For obvious reasons, this is called a “black body”.

But we need to check our ideas experimentally: so how do we construct a perfect absorber?  OK, nothing’s perfect, but in 1859 Kirchhoff had a good idea: a small hole in the side of a large box is an excellent absorber, since any radiation that goes through the hole bounces around inside, a lot getting absorbed on each bounce, and has little chance of ever getting out again.  So, we can do this in reverse: have an oven with a tiny hole in the side, and presumably the radiation coming out the hole is as good a representation of a perfect emitter as we’re going to find.  Kirchhoff challenged theorists and experimentalists to figure out and measure (respectively) the energy/frequency curve for this “cavity radiation”, as he called it (in German, of course: hohlraumstrahlung, where hohlraum means hollow room or cavity, strahlung is radiation).  In fact, it was Kirchhoff’s challenge in 1859 that led directly to quantum theory forty years later!
evel, these oscillating charges would radiate, presumably giving off the heat and light observed.   


Wien’s Law
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= wavelength of maximum emission of the object
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The higher the temperature of a blackbody, the

shorter the wavelength of maximum emission
(the wavelength at which the curve peaks).

T = temperature of the object (in kelvins)
Visible light

—

Wien’s law states that the dominant
wavelength at which a blackbody
emits electromagnetic radiation is
inversely proportional to the Kelvin
temperature of the object

The higher the temperature
of a blackbody, the more light
is emitted at all wavelengths.

12,000 K

Intensity ——

1
0 500 1000 2000 3000
Wavelength (hnm)——


Presenter
Presentation Notes
Wien's displacement law states that the black body radiation curve for different temperatures peaks at a wavelength inversely proportional to the temperature
Rayleigh–Jeans law attempts to describe the spectral radiance of electromagnetic radiation at allwavelengths from a black body at a given temperature through classical arguments. 
Stefan-Boltzman law  states that the total energy radiated per unit surface area of a black body across all wavelengths per unit time (also known as the black-body radiant exitance or emissive power), , is directly proportional to the fourth power of the black body's thermodynamic temperature T:




Black body radiation

The higher the temperature of a blackbody, the
shorter the wavelength of maximum emission
(the wavelength at which the curve peaks).

Intensity ——

0

Visible light

e

The higher the temperature
of a blackbody, the more light
is emitted at all wavelengths.

12,000 K

00 1000 2000 3000
Wavelength (hnm)——

The classical physics prediction was completely wrong! (It said that an infinite
amount of energy should be radiated by an object at finite temperature)

Wien’s law

Rayleigh-Jeanslaw  [(A,7T) = M

/14
Stefan-Boltzman law . 4
j=oTl
Max Planck found he could explain these
curves if he assumed that electromagnetic

energy was radiated in discrete chunks, rather
than continuously.

The “quanta” of electromagnetic energy is
called the photon.

Energy carried by a single photon is

E = hy = huw,

Planck’s constant: h =6.626 x 1034 Joule sec
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The first quantitative conjecture based on experimental observation of hole radiation was:
Stefan’s Law (1879): the total power j radiated from one square meter of black surface at temperature T goes as the fourth power of the absolute temperature: P=σT4, σ=5.67×10−8 watts/sq.m./K4.
Five years later, in 1884, Boltzmann derived this T4 behavior from theory: he applied classical thermodynamic reasoning to a box filled with electromagnetic radiation, using Maxwell’s equations to relate pressure to energy density. (The tiny amount of energy coming out of the hole would of course have the same temperature dependence as the radiation intensity inside.)  Wien’s Displacement Law (1893):
As the oven temperature varies, so does the frequency at which the emitted radiation is most intense. In fact, that frequency is directly proportional to the absolute temperature:
fmax∝T. (Wien himself deduced this law theoretically in 1893, following Boltzmann’s thermodynamic reasoning. It had previously been observed, at least semi-quantitatively, by an American astronomer, Langley.) 
In fact, this upward shift in fmax with T is familiar to everyone—when an iron is heated in a fire, the first visible radiation (at around 900K) is deep red, the lowest frequency visible light.  Further increase in T causes the color to change to orange then yellow, and finally blue at very high temperatures (10,000K or more) for which the peak in radiation intensity has moved beyond the visible into the ultraviolet. This shift in the frequency at which radiant power is a maximum is very important for harnessing solar energy, such as in a greenhouse.  The glass must allow the solar radiation in, but not let the heat radiation out.  This is feasible because the two radiations are in very different frequency ranges—5700K and, say, 300K—and there are materials transparent to light but opaque to infrared radiation.  Greenhouses only work because fmax varies with temperature.
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Planck’s Theory of Blackbody Radiation

*1858 — 1847
*German physicist
*Introduced the concept of “quantum of action”

*In 1918 he was awarded the Nobel Prize for the
discovery of the quantized nature of energy.

*In 1900 Planck developed a theory of blackbody radiation that leads to an
equation for the intensity of the radiation.

*This equation is in complete agreement with experimental observations.

*He assumed the cavity radiation came from atomic oscillations in the cavity
walls.

*Planck made two assumptions about the nature of the oscillators in the
cavity walls.



Planck’s Theory of Blackbody Radiation

 we demonstrate why quantum

1.5 -
concepts are necessary to ’
account for Planck Blackbody
radiation formula. The 1.0
programme to derive this |
formula is as follows. 1)
0.5
3
f(r)dr «x ——dx
S e? —1 0.0 —
0 1 2 3
8why? 1
u(v)dv = dv

3 (elv/FT _ 1)

First, we consider the properties of waves in a box and work out an expression
for the radiation spectrum in thermal equilibrium at temperature T .



Planck’s Theory of Blackbody Radiation

First, we consider the properties of waves in a box and work out an expression for
the radiation spectrum in thermal equilibrium at temperature T.

Application of the law of equipartition of energy leads to the ultraviolet
catastrophe, which shows that something is seriously wrong with the classical
argument.

Then, we introduce Einstein's deduction that light has to be quantised in order to
account for the observed features of the photoelectric effect.

Finally, we work out the mean energy per mode of the radiation in the box
assuming the radiation is quantised. This leads to Planck's radiation formula.

This calculation indicates clearly the necessity of introducing the concepts of
guantisation and quanta into physics.



Electromagnetic-Optics Theory of Light in a Resonator

The concept of the photon and the rules of photon optics are introduced by
considering light inside an optical resonator (cavity). This is a convenient choice
because it restricts the space under consideration to a simple geometry. However,
the presence of the resonator turns out not to be an important restriction in the
argument; the results can be shown to be independent of its presence.
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Fundamentals of Photonics page 446-448



Waves in a Box

* Let us revise the expression for an - A N
electromagnetic (or light) wave travelling at
the speed of light in some arbitrary direction i

say, in the direction of the vector r. 5 : \
* If the wave has wavelength A, at some ~———va4
instant the amplitude of the wave in the r-

direction is Wave vector

27T

A‘l (77) = A‘LV) \111 kj

— Q?Tf)\.

/

A(r) = Agsin(k -r) = Agsin kr.

The wave travels at the speed of light c in the r-direction and so, after time t, the
whole wave pattern is shifted a distance ct in the positive r-direction and the pattern
is AO sin krO, where we have shifted the origin to the point ct along the r-axis such
that r = rO + ct. Thus, the expression for the wave after time t is

A(r,t) = Agsin ki’ = Ay sin(kr — ket).



Waves in a Box

But, if we observe the wave at a fixed value of r, we observe the amplitude to
oscillate at frequency v. Therefore, the time dependence of the wave amplitude is
Hill(?ﬁh"T) where 7 = ,~1 is the period of oscillation of the wave.

Therefore, the time dependence of the wave at any pointis sin . where
W= 27T is the angular frequency of the wave. Therefore, the expression for
the wave

A(r,t) = Agsin(kr — wt).

and the speed of the waveis ¢ = w/h.

Consider a cubical box of side L and imagine waves bouncing back and forth inside it.
The box has fixed, rigid, perfectly conducting walls. Therefore, the electric field of the
electromagnetic wave must be zero at the walls of the box and so we can only fit
waves into the box which are multiples of half a wavelength.



Electromagnetic Modes in a Box

+ In the x-direction, the wavelengths of the Waves which can be fitted into a

waves which can be fitted into the box box with perfectly conducting walls.
are those for which
//\"I‘
— = L
2
n=1

* where [ takes any positive integral value,

1,2,3, ... Similarly, for the y and z —
directions,
MmAy nA,
= = and — [

‘)

* where m and n are also positive integers.
The expression for the waves which "t in
the box in the x-direction is

A () = Ai() S1n /".7"-1'



Electromagnetic Modes in a Box

Now kr = 2m/Azxis the component of the wave-vector of the mode of
oscillation in the x-direction. Hence, the values of kx which fit into the box are
those for which A, = 2L/l ,andso Il 1

/]'.I‘ I -
2L L
where [ takes the values I=1;2;3:::.
Similar results are found in the y and z directions:

T
/}'.,/ —

" /w': - | .
L L

Let us now plot a three-dimensional diagram with axes kx, ky and kz showing the
allowed values of kx, ky and kz. These form a regular cubical array of points, each of
them defined by the three integers, [, m; n

This is exactly the same as the velocity, or momentum, space which we introduced
for particles.



Electromagnetic Modes in a Box

 The waves can oscillate in three dimensions but the components of their k-

vectors, kx, ky and kz, must be such that they are associated with one of the
points of the

* |attice in k-space. A wave oscillating in three dimensions with any of the allowed
values of I; m; n satisfies the boundary conditions and so every point in the
lattice represents a possible mode of oscillation of the waves within the box,

consistent with the boundary conditions. m
. . . 12. ‘ ¢
Thus, in three-dimensions, the modes of T TR
oscillation can be written ol TN
) ) _ BF ¢« ¢ Nl ¢ Nls e e e e
A(x,y,z) = Agsin| k) S| /w",,'(/ ) sin( A, z) 71 TP N N
6F o« ¢ ¢ ¢ ¢ o\ o
To find the relation between kx; ky; kz oo NN
and the angular frequency o of the mode, ] T
. . . . IF o ¢ o o« o o o fo o o o o
we insert this trial solution to the three ] P S
. . . O1 23456 7 89101112131
dimensional wave equation
9 lllustrating the values of I and m
924 92A 924 1 9%A J

: = which result in components of wave
2 0z 2 Ot? vectors which can fit in the box.




Electromagnetic Modes in a Box

The time dependence of the wave is also sinusoidal,

and so we can
find the dispersion relation for the waves, that is, the relation between !/ and kx;
ky; kz, by substituting the trial solution into
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* where k is the three-dimensional wave-vector. Now.
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We need the count number of modes of oscillation in the frequency interval /to
v -+ dp. Thisis now straightforward since we need only count up the number
of lattice points in the interval of k-space k to k + dk correspondingto 1/ to

v+ dv.



Electromagnetic Modes in a Box

The time dependence of the wave is also sinusoidal, 4 = Agsinwt and so we

can find the dispersion relation for the waves, that is, the relation between @ and
kx; ky; kz, by substituting the trial solution into
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* where k is the three-dimensional wave-vector. Now.
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We need the count number of modes of oscillation in the frequency interval /to
v -+ dp. Thisis now straightforward since we need only count up the number
of lattice points in the interval of k-space k to k + dk correspondingto 1/ to

v+ dv.



Electromagnetic Modes in a Box

The number density of lattice points is one per unit volume of (I, m; n) space. We
are only interested in positive values of [, m and n and so we need only consider
one-eighth of the spheret)of radius p. The volume of a spherical shell of radius p
and thickness dpis 47p~ dp and so the number of modes in the octant is

- . 1 .
AN (p) = N(p)dp = (\) 47p* dp.

Since k= mp/Land dk = 7dp/L, wefind

i L’
(II,L\ ([)) — ‘)I/f— ('I/f.
i '_,)T_
But Lg — Visthe volume of the box &k — 2»;7;_;/@, Therefore, we can
rewrite the expression
_f Vo, V 8312 ATV
d\ (p) = k= dk = 5 5 dy = 5 dv
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The Average Energy per Mode and the Ultraviolet Catastrophe

* Finally, for electromagnetic waves, we are always allowed two independent modes,
or polarisations, per state and so we have to multiply the result by two. Because of
the nature of light waves, there are two independent states associated with each
lattice point (I, m, n). The final result is that the number of modes of oscillation in
the frequency interval » to v + dp is

y Dy r
ST
dv

‘)

dN =
¥

-
* Thus, per unit volume, the number of states is

.'4)
STV ”

dN =

dr

( )

We now introduce the idea that the waves are in thermodynamic equilibrinnm at
some temperature T. We showed that, in thermal equilibrium, we awarc %]I*T

of energy to each degree of freedom. This is because, if we wait long enough, there
are processes which enable energy to be exchanged between the apparently
independent modes of oscillation.



The Average Energy per Mode and the Ultraviolet Catastrophe

* Thus, if we wait long enough, each mode of oscillation will attain the same average
energy E, when the system is in thermodynamic equilibrium. Therefore, the energy
density of radiation per unit frequency interval per unit volume is

du = u(v) dv

wulr)

)
B8mve —

| E duv.

)
)

(

(.',

The Ultraviolet Catastrophe

The average energy of a harmonic oscillator in thermal equilib- riumis E = kT and so
the spectrum of black-body radiation is expected to be
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The Rayleigh-Jeans Law
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The Ultraviolet Catastrophe



Photoelectric effect

Light

Emitted
electrons

Voltage
source

Light .
= Evacuated
' chamber
.i Metal
f;
Positive l' Akiee
terminal )
) Current
l | meter

i T i

If optical radiation is incident upon a surface, electrons are ejected, provided the
frequency of the radiation is high enough. When monochromatic light, that is,
light of a single frequency, is shone upon the cathode of a discharge tube, it was
found that a current flowed between the cathode and the anode, associated with
the drift of the ejected electrons to the anode.
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The solution was contained in Einstein's revolutionary paper of 1905 in which he proposed that, under certain circumstances, light should be regarded as consisting ofux of particles, what we now call photons, each with energy hv, where h is Planck's constant. He discovered this result from a remarkable analysis of the thermodynamics of radiation in the Wien region of the black-body spectrum. Among the consequences of this proposal wa san explanation for various puzzling features of the photoelectric effect.


Photoelectric effect

There is a minimum frequency below which the light cannot kick out electrons...
even if wait a long time

~Y

Maximum kinetic energy (eV)

0.5 1.0 1.5
Frequency (x10% Hz)
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The solution was contained in Einstein's revolutionary paper of 1905 in which he proposed that, under certain circumstances, light should be regarded as consisting ofux of particles, what we now call photons, each with energy hv, where h is Planck's constant. He discovered this result from a remarkable analysis of the thermodynamics of radiation in the Wien region of the black-body spectrum. Among the consequences of this proposal wa san explanation for various puzzling features of the photoelectric effect.


Threshold Frequency (Energy)

Photon optics provides that the energy of an electromagnetic mode is quantized
to discrete levels separated by the energy of a photon . The energy of a photon in

a mode of frequency v is
AUENEY E = hv = hw,
200 nm Vinax = 6.22x10° m/s
o 1.77 eV 550 nm Viax = =9 q{“mg 5 m/s
A mode containing zero 2,25 gV
. 400 nm
photons carries some

31E"u' ©

energy which is called the .
zero-point energy. electrons

Potassium - 2.0 eV needed to aject electron
TOTAL energy of n photons Photoelectric effect

= (n + 3) hy, n=0,1,2,....

This was the first example of the fundamental phenomenon in physics known as
the wave-particle duality. It is the statement that, in physics, waves have particle

properties and. This lies at the very heart of guantum mechanics and leads to all
sorts of nonntuitive phenomena.



Photon energy for infrared photon

* The order of magnitude of photon energy- EXAMPLE Infrared photon
E = hv = hw,
C 14
A=1 ,um—>v=z=3><10 Hz

E=hv=199x10"J=(1.99x10"/1.6x10""")eV

E=1.24eV 1.24
E (eV) = .
(eV) Ao (pm)

The photoelectric effect demonstrates that light waves have particle properties and
that the light quanta, or photons, of a particular frequency 1 each have energy h 1.
We need to reconcile this picture with the classical picture of electromagnetic waves
in a box. In the classical picture, the energy associated with the waves is stored in the
oscillating electric and magnetic fields.

We found it necessary to impose the constraint that only certain modes are
permitted by the boundary conditions { the waves are constrained to "t into the box
with whole numbers of half wavelengths in the x; y; z
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Zero-point energy (ZPE) or ground state energy is the lowest possible energy that a quantum mechanical system may have, i.e. it is the energy of the system's ground state. Zero-point energy can have several different types of context, e.g. it may be the energy associated with the ground state of an atom, a subatomic particle or even the quantum vacuum itself. The uncertainty principle requires every quantum mechanical system to have a fluctuating zero-point energy greater than the minimum of its classical potential well. This results in motion even at absolute zero. The concept of zero-point energy was developed by Max Planck in Germany in 1911 as a corrective term added to a zero-grounded formula developed in his original quantum theory in 1900.[19] The term zero-point energy is a translation from the German Nullpunktsenergie.[20]



Derivation of Planck's law

Energy of a particular mode of frequency cannot have any arbitrary value but only
those energies which are multiples of hv, in other words the energy of the mode is
E,, = nhv , where we associate n photons with this mode.

To establish equilibrium, there must be ways of ex-changing energy between the
modes (and photons) nd this can occur through interactions with any particles or
oscillators within the volume or with the walls of the enclosure.

We now use the Boltzmann distribution to determine the expected occupancy of
the modes in thermal equilibrium. The probability that a single mode has energy

En = nhv

exp (—En/kT)

Boltzmann factor p(n) = —

Z exp (—E,/kT)

=0
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Now we have a further constraint. The quantisation of electromagnetic radiation means that the energy of a particular mode of frequency º cannot have any arbitrary value but only those energies  which are multiples of hº, in other words the en-
ergy of the mode is E(º) = nhº, where we associaten photons with this mode. We now consider all the modes (and photons) to be in thermal equilibrium at temperature T. In order to establish equilibrium, there must be ways of exchanging energy between the modes (and photons) and this can occur through interactions with any particles or oscillators within the volume or with the walls of the enclosure. 


Derivation of Planck's law

* The mean energy of the mode of
frequency ;, is therefore:

hi
ShU/KT _ q

FE =

Thus, for small values of hv/ET'.

, ha
ﬂhu/kT 1 =

1[1‘ T

7= S Bupl) —
=L Z exp (—E,/ET)

n=0

Z nhv exp (—nhv /ET)

__ n=0
00

Z exp (—nhv /kT)

n=0

hu hi

E = = = kT
€/ kT

ehv/ET _

Thus, if we take the classical limit, we recover exactly the expression for the
average energy of a harmonic oscillator in thermal equilibrium,

E =KkT.




We can now complete the determination of Planck's radiation formula. We have
already shown that the number of modes in the frequency interval to

v-+dr is (&r;_;Q ;’;-3} d1, per unit volume. The energy density of radiation in this
frequency range s .

Planck distribution function

812
= E, dv
c

» 8Thy? 1
A3 exp(hw/ET) -1

u(v)dr =

duv.

We have made enormous progress. We have introduced quantisation, quanta and
the first example of the wave-particle duality. The key idea is that we cannot
understand the form of the black-body spectrum without introducing the idea that
light consists of energy packets, photons, with energies

E = hv = hw,



Planck’s Model, Graph

AJ Somewhere between very short and
very long wavelengths, the product of
increasing probability of transitions and
decreasing energy per transition results
in a maximum in the intensity.

Intensity

\ Wavelength \

At short wavelengths, there is a At long wavelengths, there is a small
large separation between energy separation between energy levels,
levels, leading to a low probability leading to a high probability of
of excited states and few downward excited states and many downward
transitions. The low probability of transitions. The low energy in each
transitions leads to low intensity. transition leads to low intensity.
n=2 n="17
n =6
n=35
% F;JZ'] n=3
= F n=2
— Y =1 =

oectlion 4u.1



Chemist Observation-What is a photon a how light is generated ?

1. Add a chemical
substance to a flame

2.Send light from 3. Bright lines in the
the flame through spectrum show that
a narrow slit, then the substance emits

through a prism light at specific
wavelengths only




Chemist Observation-What is a photon a how light is generated ?

Molecular
hydrogen

Neon
Lithium
Iron
Barium

Calcium

The Sun

Incandescent
lamp

Fluorescent
lamp




Each chemical element produces its
own unique set of spectral lines
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Kirchhoff’s Laws

Hot blackbody

(b) ABSORPTION LINE SPECTRUM
(atoms in gas cloud absorb light of
certain specific wavelengths,
producing dark lines in spectrum)

(a) CONTINUOUS SPECTRUM (c) EMISSION LINE SPECTRUM

(blackbody emits light at all (atoms in gas cloud re-emit absorbed

wavelengths) light energy at the same wavelengths
at which they absorbed it)




What is a photon a how light is generated ?

* as a kind of conceptual skeleton.

Incoming photon, Emitted photon,
A =656.3 nm A =656.3 nm

n=2
n=3
(a) Atom absorbs a 656.3-nm (b) Electron falls fromthen=3
photon; absorbed energy causes orbit to the n = 2 orbit; energy lost
electron to jump from the n = 2 orbit by atom goes into emitting a

up to the n = 3 orbit 656.3-nm photon
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In an atom, there are specific "orbits" (n=1, n=2, etc.) in which an electron can actually orbit the nucleus. The rules for determining these orbits are quite complicated, and we will not discuss them here (it is the physics of "quantum mechanics" that is needed to fully describe the structure of atoms), but we say that the orbits are "quantized". An electron revolves around the nucleus in a particular orbit. There are a set of orbits in every atom determined by how many protons are in the nucleus, and how many other electrons are in the atom. In the hydrogen atom there is one electron in orbit around the one proton that comprises the hydrogen atom nucleus


What is known of [photons] comes from
observing the results of their being
created or annihilated

Eugene Hecht



What is a photon a how light is generated ?

Lyman series (ultraviolet) of spectral
o> lines: produced by electron transitions

< : : ’
69“ between the n =1 orbit and higher orbits
T R (n=2,3,4,...
%) ¥
/'_‘-és‘\e
Y
5 656186 n
n=1 ® 434 nim 4 Balmer series (visible and ultraviolet)
: 10nm | of spectral lines: produced by electron
f =35 875:;,,, transitions between the n = 2 orbit and
75 higher orbits (n=3, 4,5, ...)
32
N,
n=3
7
09q 5 Paschen series (infared) of spectral lines:
n=4 2 produced by electron transitions
nZs wEE between the n = 3 orbit and higher

orbits (n=4,5,6, ...)



What is a photon and how light is generated ?

Bohr’s formula for hydrogen wavelengths

lVisible a\ndI
A Ultraviolet :Ultraviolet:lnfrared
A A
A A A 1\
y A 4
g 2 2 Paschen
= series
o
I
o
wvi
o
< YYYY
1 Balmer
series
c
c
S|2
IS
El'c
wl|o
¥ YYYY Ground state

Lyman series

13.6 eV

12.8 eV
12.1 eV

10.2 eV

OeV

| | |
i
A N* n’

N = number of inner orbit
N = number of outer orbit
R = Rydberg constant (1.097 X 107 m)

A = wavelength of emitted or
absorbed photon



What is a photon a how light is generated ?

 What makes this process special is the quantized nature of
the electron orbits. As we said, there are only a special set of
allowed orbits for an electron. Thus, there are only a special
allowed sets of energy for an electron. Each orbit has a
particular energy associated with it--we say the energy of an
orbit is "quantized".

Max Planck (1858-1947)

* To move from one orbit outwards to another, the electron suggested that the emission and
. . absorption of light by matter takes
must absorb exactly the right amount of energy--it cannot the form of quanta of energy.

absorb more or less, it has to be exactly right

* The electron must absorb a photon of light with exactly the
right amount of energy.

Albert Einstein (1879-1955)
advanced the hypothesis that light
itself comprises quanta of energy.






Linearly polarized light incident to a polarizer

light is travelling in the positive z-direction, with angular frequency w and
wavevector k = (0,0,k), where the wavenumber k = w/c.

Horizontal polarization

Vertical Polarization

Arbitrary linear polarization
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Suppose that a monochromatic plane wave of light is travelling in the positive z-direction, with angular frequency ω and wavevector k = (0,0,k), where the wavenumber k = ω/c. Then the electric and magnetic fields E and H are orthogonal to k at each point; they both lie in the plane "transverse" to the direction of motion R. C. Jones in 1941. Polarized light is represented by a Jones vector, and linear optical elements are represented by Jones matrices. When light crosses an optical element the resulting polarization of the emerging light is found by taking the product of the Jones matrix of the optical element and the Jones vector of the incident light. Note that Jones calculus is only applicable to light that is already fully polarized. Light which is randomly polarized, partially polarized, or incoherent must be treated using Mueller calculus.


Circular polarization

Right circular polarization | Left circular polarization




Photon polarization

As indicated earlier, light is characterized by a set of modes of different
frequencies, directions, and polarizations, each occupied by a number of photons.

For each monochromatic plane wave traveling in some direction, there are two
polarization modes

E(r,t) = Z AqUq(r) exp(j2mvgt) €q.
q

Since the polarization modes of free space are degenerate, they are not unique.
One may use modes with linear polarization in the x and y directions, linear
polarization in two other orthogonal directions, say x' and y', or right- and left-
circular oolarizations.

A = % (Az — Ay), Ay = ‘% (Az + 4y),

The components Ax, Ay are transtormed from one coordinate system to another
like ordinary Jones vectors, and the new components represent complex probability

amplitudes in the new modes. Thus, a single photon may exist, probabilistically, in
more than one mode.
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furthermore, H is determined from E by 90-degree rotation and a fixed multiplier depending on the wave impedance of the medium. So the polarization of the light can be determined by studying E. The complex amplitude of E is written


Photon polarization

* A photonin the x linear polarization mode is the same as a photonin a
superposition of the x' linear polarization mode and the y' linear polarization mode

with probability %2 each. ;. vector (1,0) (L L)

V2742

X A x’m XA

!
y
>~ 45;J

One x-polarized photon One x'-polarized photon One y'-polarized photon
(probability % ) (probability % )

A linearly polarized photon is equivalent to the superposition of a right- and a
left-circularly polarized photon, %2 each with probability Jones vector(1,0) —>L(lij)

x V2

x xA x/
< - < OR <
y y / y /
One LP photon One RCP photon One LCP photon

(probability '2) (probability %5)
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Jones vector represents the amplitude and phase of the electric field in the x and y directions.




6 common examples of normalized Jones vectors.

Polarization Corresponding Jones vector
Linear polarized in the x-direction 1
Typically called 'Horizontal'
0

Linear polarized in the y-direction ()
Typically called 'Vertical' 1
Linear polarized at 45° from the x-axis 1 1
Typically called 'Diagonal' L+45 V/i 1

. . . . 1 1
Linear polarized at -45° from the x-axis -
Typically called 'Anti-Diagonal' L-45 ﬁ —1

1 /1

Right Hand Circular Polarized —_— ,
Typically called RCP or RHCP \/ﬁ +1

1 1
Left Hand Circular Polarized D ,
Typically called LCP or LHCP \/"i —1



Jones matrices for common optical elements

. Jones matrix

1 0
horizontal linear polarizer [ 9 D}
0o
vertical linear polarizer 01
linear polarizer at 0 cos 8 cosHsin O
cosfsing  sin® 8
quarter wave plate it 1 0
(fast axis vertical) 0 —i
quarter wave plate |10
(fast axis horizontal) ® 0 i

When light crosses an optical element the resulting polarization of the emerging light is found
by taking the product of the Jones matrix of the optical element and the Jones vector of the

incident light. Light which is randomly polarized, partially polarized, or incoherent must be
treated using Mueller calculus.



https://en.wikipedia.org/wiki/Mueller_calculus

Photon position

* When a photon impinges on a detector of small area dA located normal to the

direction of propagation at the positionr, its indivisibility causes it to be either
wholly detected or not detected at all

The probability p (r)dA of observing a photon at a point r within an incremental
area dA, at any time, is proportional to the local optical intensity I(r) e |U(r)|*,

so that
"o T » (r) dA & I(x) dA.

U(r) exp(j2mvt)

The photon is therefore more likely to be
found at those locations where the intensity
is high.

Optical photons behave as extended and
localized entities. This behavior is called wave
particle duality.

The localized nature of photons becomes
evident when they are detected.
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Transmission of a Single Photon Through a Beamsplitter

A photonis indivisible, it must choose between the two possible directions

permitted by the beamsplitter. Beamsplitter

V VV "" e V{%—;ﬁ One photon
Oné‘ ph(-)‘i:oﬁ.v o ~ (probability 7)
intensity reflectance 92, — 1—=°T One photon

(probability R =1 —x7)
intensity transmittance T

The probability that the photon is transmitted is proportional intensity transmittance

‘.T:It/l

The probability that it is reflected 1 — T — IT' /I.



Photon Momentum

In photon optics, the linear momentum of a photon is p = (E/ c)/lE where E =
hw = hck is the photon energy.

Photons carry momentum ‘p‘ - —

Change in momentum corresponds to the force and it can be calculated by the difference is
momentum flux S between entering and leaving a object

F = g_”(gm o §0ut )dA

Applying this formula to a 100% reflecting mirror reflecting a 60W lamp gives a

pressure of:
=2 JJ(S Jas

F=22w=4x107"N
C
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Does light have mass?
The short answer is "no", but it is a qualified "no" because there are odd ways of interpreting the question which could justify the answer "yes".
Light is composed of photons so we could ask if the photon has mass. The answer is then definitely "no": The photon is a massless particle. According to theory it has energy and momentum but no mass and this is confirmed by experiment to within strict limits. Even before it was known that light is composed of photons it was known that light carries momentum and will exert a pressure on a surface. This is not evidence that it has mass since momentum can exist without mass. [ For details see the Physics FAQ article What is the mass of the photon? ]. 
Sometimes people like to say that the photon does have mass because a photon has energy E = hf where h is Planck's constant and f is the frequency of the photon. Energy, they say, is equivalent to mass according to Einstein's famous formula E = mc2. They also say that a photon has momentum and momentum is related to mass p = mv. What they are talking about is "relativistic mass", an outdated concept which is best avoided [ See Relativity FAQ article Does mass change with velocity? ] Relativistic mass is a measure of the energy E of a particle which changes with velocity. By convention relativistic mass is not usually called the mass of a particle in contemporary physics so it is wrong to say the photon has mass in this way. but you can say that the photon has relativistic mass if you really want to. In modern terminology the mass of an object is its invariant mass which is zero for a photon. 
If we now return to the question "Does light have mass?" this can be taken to mean different things if the light is moving freely or trapped in a container. The definition of the invariant mass of an object is m = sqrt{E2/c4 - p2/c2}. By this definition a beam of light, is massless like the photons it is composed of. However, if light is trapped in a box with perfect mirrors so the photons are continually reflected back and forth in the box, then the total momentum is zero in the boxes frame of reference but the energy is not. Therefore the light adds a small contribution to the mass of the box. This could be measured - in principle at least - either by an increase in inertia when the box is slowly accelerated or by an increase in its gravitational pull. You might say that the light in the box has mass but it would be more correct to say that the light contributes to the total mass of the box of light. You should not use this to justify the statement that light has mass in general.
It might be thought that it would be better to regard the relativistic mass as the actual mass of photons and light, instead of invariant mass. We could then consistently talk about the light having mass independently of whether or not it is contained. If relativistic mass is used for all objects then mass is conserved and the mass of an object is the sum of the masses of its part. However, modern usage defines mass as the invariant mass of an object mainly because the invariant mass is more useful when doing any kind of calculation. In this case mass is not conserved and the mass of an object is not the sum of the masses of its parts. For example the mass of a box of light is more than the mass of the box and the sum of the masses of the photons (the latter being zero). Relativistic mass is equivalent to energy so it is a redundant concept. In the modern view mass is not equivalent to energy. It is just that part of the energy of a body which is not kinetic energy. Mass is independent of velocity whereas energy is not.
Let's try to phrase this another way. What is the meaning of the equation E=mc2? You can interpret it to mean that energy is the same thing as mass except for a conversion factor equal to the square of the speed of light. Then wherever there is mass there is energy and wherever there is energy there is mass. In that case photons have mass but we call it relativistic mass. Another way to use Einstein's equation would be to keep mass and energy as separate and use it as an equation which applies when mass is converted in energy or energy is converted to mass as in nuclear reactions. The mass is then independent of velocity and is closer to the old Newtonian concept. In that case only total of energy and mass would be conserved but it seems better to try to keep conservation of energy. The interpretation most widely used is a compromise in which mass is invariant and always has energy so that total energy is conserved but kinetic energy and radiation does not have mass. The distinction is purely a matter of semantic convention.
Sometimes people ask "If light has no mass how can it be deflected by the gravity of a star?" One answer is that any particles such as photons of light, move along geodesics in general relativity and the path they follow is independent of their mass. The deflection of star-light by the sun was first measured by Arthur Eddington in 1919. The result was consistent with the predictions of general relativity and inconsistent with the Newtonian theory. Another answer is that the light has energy and momentum which couples to gravity. The energy-momentum 4-vector of a particle, rather than its mass, is the gravitational analogue of electric charge. The corresponding analogue of electric current is the energy-momentum stress tensor which appears in the gravitational field equations of general relativity. A massless particle can have energy E and momentum p because mass is related to these by the equation m2 = E2/c4 - p2/c2 which is zero for a photon because E = pc for massless radiation. The energy and momentum of light also generates curvature of space-time so according to theory it can attract objects gravitationally. This effect is far too weak to have been measured. The gravitational effect of photons does not have any cosmological effects either (except perhaps in the first instant after the big bang). There are far too few with too



Photon Momentum

momentum associated with a photon can be transferred to objects of finite mass,
giving rise to a force and causing mechanical motion. As an example, light beams
can be used to deflect atomic beams traveling perpendicularly to the photons.

The term radiation pressure is often used to describe this phenomenon (pressure

force/area).

Sunlight on earth 0.5 nN/cm?

Gravity pulls on a 1 kg mirror with 9.8 N so the
force of the photons is negligible.

However, if the same light is reflected by a
object of 1 pgit can’t be ignored!

Using a laser on a microscopic particle will
realize this situation




Physics of optical trapping

The physics of the trapping mechanism is based on optical gradient and scattering
forces arising from the interaction of strongly focused laser light with matter

Simple models that explain optical trapping behavior can be applied in the Mie
scattering (d >> A) and the Rayleigh scattering (d << A) regimes depending on the
size of the particle relative to the wavelength of laser light

A real optical tweezers typically works in the intermediate (d = A) regime,
requiring a rigorous application of complicated approaches such as Generalized
Lorentz-Mie Scattering or T-Matrix theory (beyond the scope of this lecture!)



Photon Interference

demonstrate the wave nature of light

Single
photon

Screen

Young's double-pinhole interference experiment is generally invoked to

P

Observation Probabilit;
plane

The occurrence of the interference results from the extended nature of the photon,
which permits it to pass through both holes of the apparatus. This gives it knowledge
of the entire geometry of the experiment when it reaches the observation plane,

where it is detected as a single entity.
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The modern double-slit experiment is a demonstration that light and matter can display characteristics of both classicallydefined waves and particles; moreover, it displays the fundamentally probabilistic nature of quantum mechanical phenomena. Thomas Young in 1801 (well before quantum 


Photon Interference



Presenter
Presentation Notes
Sending particles through a double-slit apparatus one at a time results in single particles appearing on the screen, as expected. Remarkably, however, an interference pattern emerges when these particles are allowed to build up one by one (see the image to the right). This demonstrates the wave-particle duality, which states that all matter exhibits both wave and particle properties: the particle is measured as a single pulse at a single position, while the wave describes the probability of absorbing the particle 


Photon Streams

 The temporal pattern of such photon registrations can be highlighted by examining

* the temporal and spatial behavior separately. Consider the use of a detector with
good temporal resolution that integrates light over a finite area A

s 4 ILILLILH P(t) = [, I(r,t)dA.

T e s

Light ‘
& Detector L )

Oscilloscope

Photon registrations at random localized instants of time for a detector that integrates
light over an area A.

Mean Photon-Flux Density
Monochromatic light of frequency v and classical intensity I(r) (Watts/cm 2 ) carries a

mean photon-flux density I(I‘)

¢(r) = 7o



Mean Photon Flux Density/ Mean Photon Flux

* Typical values of q; r for some common sources of light

Source Mean Photon-Flux Density (photons /s-cm?)
Starlight 106

Moonlight 108

Twilight 101°
Indoor light 10"
Sunlight 10
Laser light® 1072

%A 10-mW He—Ne laser beam at A\, = 633 nm focused to a 20-pm-diameter spot.

The mean photon flux @ (units of photons /s) is obtained by integrating the mean

photon-flux density over a specified area

P
— r)dA = —
o= [ pwiA= -,

As an example, 1 nW of optical power, at a wavelength A 200 nm, delivers to an
object an average photon flux @ =10 ® photons per second.



Mean Number of photons

The mean number of photons n detected in the area A and in the time interval T is
obtained by multiplying the mean photon flux ® in by the time duration

_ E
n (D T — T,
hv
Classical Quantum

Optical intensity I(r) Photon-flux density ¢(r) = I(r)/hv
Optical power P Photon flux ® = P/hv
Optical energy E Photon number n =E/hv
Time Varying Light ( t)

b(r,t) =




Randomness of Photon Flow

For photon streams, the classical intensity I(r,t) determines the mean photon- flux
density ¢(r,t). The properties of the light source determine the fluctuations

the times at which the photons are detected are random, their statistical behavior

determined by the source,

P(t) | P(?)
g -§ E /\/\/
g [N e)
O &
a

o
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t
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t t
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(a)

(a) Constant optical power and the corresponding random photon arrival times.

(b) Time-varying optical power and the corresponding random photon arrival times



Randomness of Photon Flow

An understanding of photon-number statistics is important for applications such as
reducing noise in weak images and optimizing optical information transmission.

Coherent light has a constant optical power P. The corresponding mean photon flux
®=P/hv (photons/s) is also constant, but the actual times of registration of the
photons are random. An expression for the probability distribution p( n ) can be
derived under the assumption that the registrations of photons are statistically
independent. The result is the Poisson distribution

A" exp(—7
p(n) = ex:’)'( ), n=0,12,...

It is not difficult to show in and that the mean of the Poisson distribution is indeed
n and its variance is equal to its mean:

2___
o, = 1.



Signal to Noise Ratio

The randomness of the number of photons constitutes a fundamental source of
noise that we have to account for when using light to transmit a signal.
Representing the mean of the signal as n, and its noise by the root mean square
value is on, a useful measure of the performance of light as an information-

carrying medium is the signal-to-noise ratio (SNR). The SNR of the random number
n is defined as

2
INR — (mean) _

—2
n
variance o2

For the Poisson distribution
SNR = n,

so that the signal-to-noise ratio increases linearly with the mean number of photon
counts.



Photon Shot Noise/ Exposure dependent

0.001 photons per 0.01photonsper ~ 0.1photons per
pixel pixel pixel

A photon noise simulation, using a sample image as a source and a per-pixel Poisson
process to model an otherwise perfect camera (quantum efficiency = 1, no read-
noise, no thermal noise, etc).



Noise Sources of a Detector

Photon Shot Noise — Counting statistics of the signal photons
-Originates from the Poisson distribution of signal photons as a function of

time
-Random arrival of photons and electron is governed by Poisson distribution

* Dark Current Noise — Counting statistics of
spontaneous electron generated in the device

* Johnson Noise — Thermally induced current in

Shot Noise
+

Multiplicative Noise

Shot Noise Variation
Variation ‘ the transimpedence amplifier
Average
Signal
Intensity . . ) . 2 . 2
overal noise = \/ (readnoise)” + (darknoise)” + (shotnoise)
vm ﬁ“ current)



Photon Shot Noise

* Shot noise is white noise, just like Johnson noise. Does not exist unless current is

driven through the device.
* Thisis termed “white noise” why?

* Because, like in white light, all frequencies are equally represented

* Standard deviation (or noise) and the photon noise limited Signal-to-Noise-Ratio

(SNR) associated with detecting a mean of ‘N’ photons are given by

Log(S/N)
Noise (photon) = JN

Signal N
SNR( photon) = = =N
(P ) Noise N

* Means to enhance S/N
— Signal averaging: internally or externally

logS

— Signal smoothing: boxcar averaging, moving average, polynomial smoothing

(keyword: convolution)
— Filtering in the frequency domain:
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